
HSI-24 OPERATOR’S MANUAL

HSI-24 Communications device driver
32 bit Dynamic Link Library
for use with Windows 95/98

VERSION 1.0

 Probe Products Corporation
 1763 Baseline Road
 Grand Island, NY 14072
 (716) 773-5554
 (716)-773-5336 FAX
 www.probeproducts.com

Table of Contents

The HSI-24, an Overview 1

System Components 1

Large Systems . 1

Auxiliary Inputs . 1

High Speed Operation 2

Quick Start . 3

Files on Diskette . 4

File Required to run HSI-24 4

File Required to Interface to HSI-24 4

hsicom32.dll Software Interface 5

Overview . 5

Communication Functions 8

Overview . 8

Status Code . 8

General Arguments . 8

General Return Values 8

Floating Point Arguments 9

Floating Point Return Values 9

Funtion HsiCommInit 10

Funtion HsiMsgBox 11

Funtion HsiFirmware 12

Funtion HsiDLL . 13

Function HsiStartScan 14

Function HsiStopScan 15

Function HsiDefineChannel 16

Function HsiReadFormula 17

i

Function HsiClearAllChannels 18

Function HsiClearChannel 19

Function HsiReadChannel 20

Function HsiSetCzero 21

Function HsiReadCzero 22

Function HsiResetMM 23

Function HsiReadLvdt 24

Function HsiSetTfsv 25

Function HsiReadTfsv 26

Function HsiSetTzero 27

Function HsiReadTzero 28

Function HsiReadAnalog 29

Function HsiSetAfsv 30

Function HsiReadAfsv 31

Function HsiSetAzero 32

Function HsiReadAzero 33

Function HsiSetScanTime 34

Function HsiGetScanTime 35

Function HsiGetScanFlag 36

Function HsiReadDirect 37

Appendix A: HSI-24 Formula Syntax 38

Peak Hold Functions 38

Mathematical Functions 38

Miscellaneous Functions 38

Mathematical Operators 39

Constants . 39

Input Terms . 39

ii

Channel Terms . 39

Example Formulae 39

Appendix B: Startup Settings 40

Appendix C: Error Codes 41

Command Error . 41

Channel Definition Errors 41

iii

The HSI-24, an Overview

Probe Product Corporation’s HSI-24 is a high speed signal conditioning/data processing
system designed to allow direct connection of gaging and displacement transducers to an
IBM or IBM compatible computer.

To acquaint a new user with the powerful features of the HSI-24, an application program
is furnished with the system. This program can be used "as-is" to set up a measurement
system, or it can be used as a basis for customized software. Source code for this applica-
tion program is included as part of the system. This application program called
’HSIDEMO’ is available in a DOS version that may also be used through Windows.

System Components

The system consists of four parts:
1- a master system board with onboard 16-bit processor, A/D converter and all other ac-
tive analog and digital devices, residing within the computer and occupying one slot,
2- a cable assembly to connect the system board to a passive external junction box with
transducer sockets,
3- a passive junction box (normally located near the transducers) with sockets suitable for
the transducers in use, and
4- a diskette containing the internal operating software for the system, 16/32 bit DLL
Software and sample application and setup programs.

Some systems may contain special cable assemblies for specific applications, or no cable
and junction box at all, when those connections are to be made on-site.

Large Systems

For those applications requiring conditioning for more than 24 transducers, slave system
boards, cable assemblies and boxes are added to the master system. Up to 96 transducers
can be conditioned by one such master/slave system.

Auxiliary Inputs

Besides the transducer inputs, each system board (master or slave) has four +/-5VDC in-
puts which may be used for any analog signal which has (or can be modified to have) suit-
able values. Digital inputs from TTL devices, Hall-effect proximity switches and switch
closures are typical inputs which can also be used.

A fully expanded HSI-24 system will, therefore, have the capacity for 96 transducers and
16 voltage sources.

The HSI-24, an Overview 1

High Speed Operation

It is important to note that all signal conditioning for the transducers is accomplished
within the system -- no external gaging amplifiers, A/D converters or communication
ports are required.

 Transducer signals, or even complex measurement functions (using the unique formulae
construction techniques) can be passed to the host at up to 2,500 readings per second.

The HSI-24 lends itself to dynamic gaging, since complex functions can be completed by
the on-board co-processor, with results being passed to the host computer. And, since all
communications to the host computer are passed directly to its bus, data transfer rates are
many times faster than those possible using RS-232, RS-422 or IEEE- 488 interfaces.
These two factors combine to allow very high speed gaging operations.

The HSI-24, an Overview 2

Quick Start

For those users who are sure they are familiar with the installation of adapter cards in PC
type equipment, this section provides a brief setup procedure.

1. Remove power and cover from PC.
2. Install HSI-24 card. Be sure to install the rear bracket hold-down screw, otherwise the
force from flexing the large interface cable will pop the HSI-24 card out of the bus con-
nector.
3. Install the large interface cable between the HSI-24 rear connector and the transducer
junction box. Unless you have special cables the ends of the large cable are interchange-
able.
4. Replace the computer covers.
5. Start the computer.
6. Make a subdirectory for the HSI-24 software.
7. Copy all the files from the supplied diskette to the HSI-24 subdirectory.
8. Run the batch file called RUN.

The HSI-24, an Overview 3

Files on Diskette

File Required to run HSI-24

PCA10C.BIN firmware which is loaded into coprocessor

File Required to Interface to HSI-24

HSICOM32.DLL program which interfaces commands to hardware.

The HSI-24, an Overview 4

hsicom32.dll Software Interface

Overview

The HSI Communications device driver (hsicom32.dll) is written in "C" and compiled as
a 32 bit Dynamic Link Library (dll) file for use with Windows 95/98. The device drivers
for Windows NT, Windows 3.1 and DOS are different so the target platform should be
known or defined before using the driver.

To use the HSI Communication functions in your software, include the supplied hsi-
com32.h file in the C source files. Link the file hsicom32.lib with your application. The
application must be able to locate the hsicom32.dll file at run time. There are various
strategies to accomplishing this. Check the documentation with the Windows develop-
ment package for details about locating dll files. Put the dll file (hsicom32.dll) in the
same path as your application or in the windows/system path.

All of the functions in the hsicom32.dll have the same interface as their counterparts in
the non-Windows (DOS) hsicomm.c file. See the documentation on using the non-Win-
dows hsicomm.c driver.

The functions that differ from the non-Windows (hsicomm.c) functions are:

int HsiCommInit(unsigned IOBaseAddr,const char *FirmwareFile);
This function must be the first function called before any of the other functions in
HSICOM32.DLL are used.

The HsiCommInit function will set the IO address as given and attempt access to the HSI-
24 board. If the access fails the HsiCommInit function will attempt to locate the given
firmware file and load it into the HSI-24 board.

void HsiMsgBox(int Enable);
The HsiMsgBox function enables/disables a dialog box which appears whenever there is
an error detected in an hsicomm command. The dialog box translates the interface error
code into a brief descriptive error message.
The enabling/disabling of the error dialog box does not affect the error codes returned by
the hsicomm functions.

int HsiFirmware(char *FirmwareVersion);
The HsiFirmware() function will copy the version stamp read from the firmware file to
the area pointed to by the parameter.

int HsiDLL(char *DLLVersion);
The HsiDLL function will copy the version stamp from the DLL file to the area pointed
to by the parameter.

hsicom32.dll Software Interface 5

Typical use:
STEP 1 - Initialize
.
 int HsiLoadStatus=0;
.
 // load firmware
 HsiLoadStatus = HsiCommInit(0,"pca10c.bin");
 if(HsiLoadStatus==0){
 HsiSetScanTime(100); // scan time set to 10.0 ms

// scan time must be set or it will default
// to zero (meaning no scanning)

 HsiStartScan();
 }
.
.
TimerID = SetTimer(NULL,0,400,NULL);

STEP 2 - define channels

HsiDefineChannel(1,"t1+t2");
HsiDefineChannel(2,"max(t1+t2)");
HsiDefineChannel(3,"min(t1+t2)");

STEP 3 - read values
.
.
float values[3];
.
.
HsiReadChannel(1,&values[0]); // pass adr of space for float
HsiReadChannel(2,&values[1]); // pass adr of space for float
HsiReadChannel(3,&values[2]); // pass adr of space for float
.
.

// display or store values
.
.
// to reset max/min/tir functions used in formulae call HsiResetMM()
if(ResetPushedMessage)
 HsiResetMM();

hsicom32.dll Software Interface 6

Gaging Application

Top Level Communication
Functions

Low Level I/O Functions handled
by hsicom32.dll device driver.

Resident in PC

HSI-24 Firmware

Resident in HSI-24

hsicom32.dll Software Interface 7

Communication Functions

Overview

There is one function for each of the HSI-24 commands.
To use the functions, call the function with its arguments. The function will issue the
proper command code and arguments to the HSI-24. The function will return the HSI-
24’s response.

Status Code

All HSI-24 functions return a status code which indicates the success or failure of the
command execution. The status code is returned as the value of the function. The func-
tions that return values in addition to the status code require arguments which are a
pointer to a place to put the returned value.
The following rules pertain to all top level functions:
All functions return an integer which will be:
zero If the command was completed successfully.
-1 If the low level routines were unable to communicate.
+value If the command was not executable. (see Error Codes in Appendix C)

General Arguments

When functions require a channel number as an argument the channel number must be be-
tween 1 and 96.
When functions require a transducer number as an argument the transducer number must
be between 1 and 96. (Transducer numbers greater than 24 will be accepted but are only
meaningful if slave HSI-24s are installed.)
When functions require an analog number as an argument the analog number must be be-
tween 1 and 16. (Analog numbers greater than 4 will be accepted but are only meaningful
if slave HSI-24s are installed.)

General Return Values

All functions return the status as the function return value. When other values must be re-
turned the calling routine must supply a pointer to a variable which will have the return
value stored into it.

hsicom32.dll Software Interface 8

Floating Point Arguments

When a function requires a floating point value, the value supplied is dependent on the
condition of the floating point input mode. If the floating point input mode is set to the
value FP_IMODE_NATIVE (see file PCACMD.H), then the number must be a single
precision number in 8087 format. If the floating point input mode is set to the value
FP_IMODE_ASCII then the number must be an ASCII string which represents the value.
In the ASCII mode the conversion will terminate when an invalid character is detected.
The string ’ABC’ will produce a value of ’0.0’. Scientific notation is not allowed.

Floating Point Return Values

When a function returns a floating point value, the value returned is dependent on the con-
dition of the floating point output mode. If the floating point output mode is set to the
value FP_OMODE_NATIVE, then the number will be a single precision number in 8087
format. If the FLOATING POINT OUTPUT MODE is set to the value FP_OMODE_AS-
CII, then the number will be an ASCII string which represents the value. The number of
decimal places in ASCII output mode is controlled by an HSI-24 command.
Important Note. The functions designed for IEEE floats move the floating point number
to the variable pointed to by the argument. The functions designed for ASCII floats only
set the passed pointer to point to the result string. The result string still located in the re-
ceive buffer. If you want to save the result string you must copy it out of the buffer before
another HSI-24 function is called.

hsicom32.dll Software Interface 9

Funtion HsiCommInit

For ’C’ applications use:
int HsiCommInit(HSIBasePort,HSIBinFIle)
unsigned HSIBasePort; //Base IO address of HSI-24 system.
char *HSIBinFIle; //char *HSIBinFIle="pca10c.bin";

For ’Basic’ applications use:
Declare Function HsiCommInit Lib "hsicom32" (_
 ByVal HSIBasePort As Integer, _
 ByVal HSIBinFIle As String _
) As Integer

PARAMETERS:
unsigned IOBaseAddr - Base IO address of HSI-24 system. Use the value zero here. Us-
ing a value of zero will cause the dll to use the default HSI-24 address of 0x310. See
notes below if an I/O bus conflict exists with the address 0x310.
char *FirmwareFile - Pointer to the name (including path if not in the application’s direc-
tory) of the firmware file. The firmware file is the file with a name like "PCA10C.BIN".

RETURNS:
Return value is zero if firmware loaded OK.

zero If the command was completed successfully.
-1 If the low level routines were unable to communicate.
+value If the command was not executable. (see Error Codes in Appendix C)

COMMENTS:
This function must be the first function called before any of the other functions in
HSICOM32.DLL are used.

The HsiCommInit function will set the IO address as given and attempt access to the HSI-
24 board. If the access fails the HsiCommInit function will attempt to locate the given
firmware file and load it into the HSI-24 board.

I/O Address Conflicts:
The HSI-24 uses I/O addresses 0x0310 through 0x0313 inclusive. It decodes all 16 bits of
the I/O address so it will not reappear at intervals throughout the I/O address space.
Other values can be used if a conflict exists on the ISA bus where the HSI-24 is installed.
Using other address values to resolve bus conflicts requires that the addressing jumpers
on the HSI-24 board be changed.

hsicom32.dll Software Interface 10

Funtion HsiMsgBox

For ’C’ applications use:
void HsiMsgBox(int Enable);
int Enable; // Value of zero (FALSE) disables the error dialog box.

For ’Basic’ applications use:
Declare Function HsiMsgBox Lib "hsicom32" (_
 ByVal Enable As Integer, _
) As Integer

PARAMETERS:
int Enable - Value of one (TRUE) enables the error dialog box.

RETURNS:
Return status.
zero If the command was completed successfully.
-1 If the low level routines were unable to communicate.
+value If the command was not executable. (see Error Codes in Appendix C)

COMMENTS:
The HsiMsgBox function enables/disables a dialog box which appears whenever
there is an error detected in an hsicomm command. The dialog box translates
the interface error code into a brief descriptive error message.

The enabling/disabling of the error dialog box does not affect the error
codes returned by the hsicomm functions.

hsicom32.dll Software Interface 11

Funtion HsiFirmware

For ’C’ applications use:
int HsiFirmware(VersionString);
char *VersionString; //Version number of firmware loaded into the HSI-24.

For ’Basic’ applications use:
Declare Function HsiFirmware Lib "hsicom32" (_
 ByVal VersionString As String, _
) As Integer

PARAMETERS:
char *VersionString - Version number of firmware loaded into the HSI-24. A pointer to
char array 40 bytes long.

RETURNS:
Return status.
zero If the command was completed successfully.
-1 If the low level routines were unable to communicate.
+value If the command was not executable. (see Error Codes in Appendix C)

COMMENTS:
The HsiFirmware function returns the version number of the current firmware that is
loaded into the HSI-24. The version number returned is an array 40 bytes long.

hsicom32.dll Software Interface 12

Funtion HsiDLL

For ’C’ applications use:
int HsiDLL(VersionString);
char *VersionString; //Version number of current Dynamic Link Library.

For ’Basic’ applications use:
Declare Function HsiDLL Lib "hsicom32" (_
 ByVal VersionString As String, _
) As Integer

PARAMETERS:
char *VersionString - Version number of current Dynamic Link Library. A pointer to
char array 20 bytes long.

RETURNS:
Return status.
zero If the command was completed successfully.
-1 If the low level routines were unable to communicate.
+value If the command was not executable. (see Error Codes in Appendix C)

COMMENTS:
The HsiDLL function returns the version number of the current Dynamic Link Library.

hsicom32.dll Software Interface 13

Function HsiStartScan

For ’C’ applications use:
int HsiStartScan()

For ’Basic’ applications use:
Declare Function HsiStartScan Lib "hsicom32" (_
) As Integer

PARAMETERS:

RETURNS:
Return status.
zero If the command was completed successfully.
-1 If the low level routines were unable to communicate.
+value If the command was not executable. (see Error Codes in Appendix C)

COMMENTS:
This function enables the scanning of formulae which contain MAX, MIN or TIR func-
tions.

hsicom32.dll Software Interface 14

Function HsiStopScan

For ’C’ applications use:
int HsiStopScan()

For ’Basic’ applications use:
Declare Function HsiStopScan Lib "hsicom32" (_
) As Integer

PARAMETERS:

RETURNS:
Return status.

COMMENTS:
This function disables the scanning of formulae which contain MAX, MIN or TIR func-
tions. The functions will be unaffected by changes in their arguments.

hsicom32.dll Software Interface 15

Function HsiDefineChannel

For ’C’ applications use:
int HsiDefineChannel(int channel,char *formula)
int channel; //A channel number.
char *formula; //Pointer to formula string.

For ’Basic’ applications use:
Declare Function HsiDefineChannel Lib "hsicom32" (_
 ByVal channel As Integer, _
 ByVal Formula As String _
) As Integer

PARAMETERS:
int channel - A channel number must be between 1 and 96, inclusive.
char *formula - The formula argument is a pointer to a string which contains a valid
formula.

RETURNS:
Return status.

COMMENTS:
This function will define a formula for a channel. The formula argument is a pointer to a
string which contains a valid formula. The formulae are supplied to the HSI-24 in the
form of an ASCII string terminated by a null byte. See the description of formulae in the
section HSI-24 FORMULA SYNTAX for details of allowed formats.

hsicom32.dll Software Interface 16

Function HsiReadFormula

For ’C’ applications use:
int HsiReadFormula(int channel,char *formula)
int channel; //A channel number.
char **formula; //Points *formula to formula string in the rx_buffer.

For ’Basic’ applications use:
Declare Function HsiReadFormula Lib "hsicom32" (_
 ByVal channel As Integer, _
 ByRef Formula As String _
) As Integer

PARAMETERS:
int channel - A channel number must be between 1 and 96, inclusive.
char **formula - The formula argument is a pointer to a string which contains a valid
formula.

RETURNS:
Return status.

COMMENTS:
This function will set the pointer (char **formula) to point to the ASCIIZ string (an AS-
CII string terminated by a null byte) which is the formula for the specified channel.
Note: This function does not copy the string to a destination string. The formula string is
located in the receive buffer and formula points to the receive buffer location.
The formula argument is a pointer to a string which contains a valid formula. See the de-
scription of formulae in the section HSI-24 FORMULA SYNTAX for details of allowed
formats.

hsicom32.dll Software Interface 17

Function HsiClearAllChannels

For ’C’ applications use:
int HsiClearAllChannels()

For ’Basic’ applications use:
Declare Function HsiClearAllChannels Lib "hsicom32" (_
) As Integer

PARAMETERS:

RETURNS:
Return status.

COMMENTS:
This function will erase the formulae for all channels.

hsicom32.dll Software Interface 18

Function HsiClearChannel

For ’C’ applications use:
int HsiClearChannel(int channel)
int channel; //A channel number.

For ’Basic’ applications use:
Declare Function HsiClearChannel Lib "hsicom32" (_
 ByVal channel As Integer _
) As Integer

PARAMETERS:
int channel -The channel number must be between 1 and 96, inclusive.

RETURNS:
Return status.

COMMENTS:
This function will erase the formula for one channel.

hsicom32.dll Software Interface 19

Function HsiReadChannel

For ’C’ applications use:
int HsiReadChannel(int channel, float *cvalue)
int channel; //A channel number.
float *cvalue; //Pointer to the channel value.

For ’Basic’ applications use:
Declare Function HsiReadChannel Lib "hsicom32" (_
 ByVal channel As Integer, _
 ByRef Value As Single _
) As Integer

PARAMETERS:
int channel - The channel number must be between 1 and 96, inclusive.
float *cvalue - Pointer to the returned value read.

RETURNS:
Return status.

COMMENTS:
Reads the value of a channel and places the result in the location pointed to by cvalue.

All functions return the status as the function return value. When other values must be re-
turned the calling routine must supply a pointer to a variable which will have the return
value stored into it.

hsicom32.dll Software Interface 20

Function HsiSetCzero

For ’C’ applications use:
int HsiSetCzero(int channel, float *czero)
int channel; //A channel number.
float *czero; //Pointer to the channel’s new zero offset value.

For ’Basic’ applications use:
Declare Function HsiSetCzero Lib "hsicom32" (_
 ByVal channel As Integer, _
 ByRef ChanZero As Single _
) As Integer

PARAMETERS:
int channel - The channel number must be between 1 and 96, inclusive.
float *czero - Pointer to the channel’s new zero offset value to be set by function call.

RETURNS:
Return status.

COMMENTS:
This function sets the zero offset for a channel.

The channel’s zero offset value is added to the channel value when the HsiReadChannel
function is used and when the channel is used in a formula for another channel.

All functions return the status as the function return value. When other values must be re-
turned the calling routine must supply a pointer to a variable which will have the return
value stored into it.

hsicom32.dll Software Interface 21

Function HsiReadCzero

For ’C’ applications use:
int HsiReadCzero(int channel, float *czero)
int channel; //A channel number.
float *czero; //Pointer to the channel’s current zero offset value.

For ’Basic’ applications use:
Declare Function HsiReadCzero Lib "hsicom32" (_
 ByVal channel As Integer, _
 ByRef ChanZero As Single _
) As Integer

PARAMETERS:
int channel - The channel number must be between 1 and 96, inclusive.
float *czero - Pointer to the channel’s current zero offset value returned by function call.

RETURNS:
Return status.

COMMENTS:
This function reads the current zero offset for a channel.

The channel’s zero offset value is added to the channel value when the HsiReadChannel
function is used and when the channel is used in a formula for another channel.

All functions return the status as the function return value. When other values must be re-
turned the calling routine must supply a pointer to a variable which will have the return
value stored into it.

hsicom32.dll Software Interface 22

Function HsiResetMM

For ’C’ applications use:
int HsiResetMM()

For ’Basic’ applications use:
Declare Function HsiResetMM Lib "hsicom32" (_
) As Integer

PARAMETERS:

RETURNS:
Return status.

COMMENTS:
This function will reset all MIN, MAX and TIR functions.

hsicom32.dll Software Interface 23

Function HsiReadLvdt

For ’C’ applications use:
int HsiReadLvdt(int lvdt, float *tvalue)
int lvdt; //An lvdt number.
float *tvalue; //Pointer to the transducer reading.

For ’Basic’ applications use:
Declare Function HsiReadLvdt Lib "hsicom32" (_
 ByVal lvdt As Integer, _
 ByRef tvalue As Single _
) As Integer

PARAMETERS:
int lvdt - The transducer number must be between 1 and 96, inclusive.
float *tvalue - Pointer to the transducer reading returned by function call.

RETURNS:
Return status.

COMMENTS:
This function reads the current value of a transducer.

All functions return the status as the function return value. When other values must be re-
turned the calling routine must supply a pointer to a variable which will have the return
value stored into it.

hsicom32.dll Software Interface 24

Function HsiSetTfsv

For ’C’ applications use:
int HsiSetTfsv(int lvdt, float *tfsv)
int lvdt; //An lvdt number.
float *tfsv; //Pointer to thefull scale value.

For ’Basic’ applications use:
Declare Function HsiSetTfsv Lib "hsicom32" (_
 ByVal lvdt As Integer, _
 ByRef tfsv As Single _
) As Integer

PARAMETERS:
int lvdt - The transducer number must be between 1 and 96, inclusive.
float *tfsv - Pointer to the transducer reading returned by function call.

RETURNS:
Return status.

COMMENTS:
This function sets the full scale value of a transducer.

All functions return the status as the function return value. When other values must be re-
turned the calling routine must supply a pointer to a variable which will have the return
value stored into it.

hsicom32.dll Software Interface 25

Function HsiReadTfsv

For ’C’ applications use:
int HsiReadTfsv(int lvdt, float *tfsv)
int lvdt; //An lvdt number.
float *tfsv; //Pointer to thefull scale value.

For ’Basic’ applications use:
Declare Function HsiReadTfsv Lib "hsicom32" (_
 ByVal lvdt As Integer, _
 ByRef tfsv As Single _
) As Integer

PARAMETERS:
int lvdt - The transducer number must be between 1 and 96, inclusive.
float *tfsv - Pointer to the full scale value returned by function call.

RETURNS:
Return status.

COMMENTS:
This function reads the current full scale value of a transducer.

All functions return the status as the function return value. When other values must be re-
turned the calling routine must supply a pointer to a variable which will have the return
value stored into it.

hsicom32.dll Software Interface 26

Function HsiSetTzero

For ’C’ applications use:
int HsiSetTzero(int lvdt, float *tzero)
int lvdt; //An lvdt number.
float *tzero; //Pointer to thetransducer zero value.

For ’Basic’ applications use:
Declare Function HsiSetTzero Lib "hsicom32" (_
 ByVal lvdt As Integer, _
 ByRef tzero As Single _
) As Integer

PARAMETERS:
int lvdt - The transducer number must be between 1 and 96, inclusive.
float *tzero - Pointer to the zero value.

RETURNS:
Return status.

COMMENTS:
This function sets the zero offset for a transducer. The zero offset is added to the
transducer value when the read transducer function is used and also when the transducer
is used in a formula.

All functions return the status as the function return value. When other values must be re-
turned the calling routine must supply a pointer to a variable which will have the return
value stored into it.

hsicom32.dll Software Interface 27

Function HsiReadTzero

For ’C’ applications use:
int HsiReadTzero(int lvdt, float *tzero)
int lvdt; //An lvdt number.
float *tzero; //Pointer to the zero value.

For ’Basic’ applications use:
Declare Function HsiReadTzero Lib "hsicom32" (_
 ByVal lvdt As Integer, _
 ByRef tzero As Single _
) As Integer

PARAMETERS:
int lvdt - The transducer number must be between 1 and 96, inclusive.
float *tzero - Pointer to the zero value returned by function call.

RETURNS:
Return status.

COMMENTS:
This function reads the current zero offset for a transducer.

All functions return the status as the function return value. When other values must be re-
turned the calling routine must supply a pointer to a variable which will have the return
value stored into it.

hsicom32.dll Software Interface 28

Function HsiReadAnalog

For ’C’ applications use:
int HsiReadAnalog(int analog, float *avalue)
int analog; //An analog number.
float *avalue; //Pointer to the analog value.

For ’Basic’ applications use:
Declare Function HsiReadAnalog Lib "hsicom32" (_
 ByVal analog As Integer, _
 ByRef avalue As Single _
) As Integer

PARAMETERS:
int analog - The transducer number must be between 1 and 96, inclusive.
float *avalue - Pointer to the analog value returned by function call.

RETURNS:
Return status.

COMMENTS:
This function reads the current value of an analog input.

All functions return the status as the function return value. When other values must be re-
turned the calling routine must supply a pointer to a variable which will have the return
value stored into it.

hsicom32.dll Software Interface 29

Function HsiSetAfsv

For ’C’ applications use:
int HsiSetAfsv(int analog, float *afsv)
int analog; //An analog number.
float *afsv; //Pointer to theanalog full scale value.

For ’Basic’ applications use:
Declare Function HsiSetAfsv Lib "hsicom32" (_
 ByVal analog As Integer, _
 ByRef afsv As Single _
) As Integer

PARAMETERS:
int analog - The analog number must be between 1 and 16, inclusive.
float *afsv - Pointer to the analog full scale value reading.

RETURNS:
Return status.

COMMENTS:
This function sets the full scale value of an analog input.

All functions return the status as the function return value. When other values must be re-
turned the calling routine must supply a pointer to a variable which will have the return
value stored into it.

hsicom32.dll Software Interface 30

Function HsiReadAfsv

 For ’C’ applications use:
int HsiReadAfsv(int analog, float *afsv)
int analog; //An analog number.
float *afsv; //Pointer to theanalog full scale value.

For ’Basic’ applications use:
Declare Function HsiReadAfsv Lib "hsicom32" (_
 ByVal analog As Integer, _
 ByRef afsv As Single _
) As Integer

PARAMETERS:
int analog - The analog number must be between 1 and 16, inclusive.
float *afsv - Pointer to the analog full scale value reading.

RETURNS:
Return status.

COMMENTS:
This function reads the full scale value of an analog input.

All functions return the status as the function return value. When other values must be re-
turned the calling routine must supply a pointer to a variable which will have the return
value stored into it.

hsicom32.dll Software Interface 31

Function HsiSetAzero

For ’C’ applications use:
int HsiSetAzero(int analog, float *azero)
int analog; //An analog number.
float *azero; //Pointer to theanalog zero offset value.

For ’Basic’ applications use:
Declare Function HsiSetAzero Lib "hsicom32" (_
 ByVal analog As Integer, _
 ByRef azero As Single _
) As Integer

PARAMETERS:
int analog - The analog number must be between 1 and 16, inclusive.
float *azero - Pointer to the analog zero offset reading.

RETURNS:
Return status.

COMMENTS:
This function sets the zero offset for an analog input. The zero offset is added to the ana-
log input value when the read analog function is used or when the analog input is used in
a formula.

All functions return the status as the function return value. When other values must be re-
turned the calling routine must supply a pointer to a variable which will have the return
value stored into it.

hsicom32.dll Software Interface 32

Function HsiReadAzero

For ’C’ applications use:
int HsiReadAzero(int analog, float *azero)
int analog; //An analog number.
float *azero; //Pointer to theanalog zero offset value.

For ’Basic’ applications use:
Declare Function HsiReadAzero Lib "hsicom32" (_
 ByVal analog As Integer, _
 ByRef azero As Single _
) As Integer

PARAMETERS:
int analog - The analog number must be between 1 and 16, inclusive.
float *azero - Pointer to the analog zero offset reading.

RETURNS:
Return status.

COMMENTS:
This function reads the zero offset for an analog input.

All functions return the status as the function return value. When other values must be re-
turned the calling routine must supply a pointer to a variable which will have the return
value stored into it.

hsicom32.dll Software Interface 33

Function HsiSetScanTime

For ’C’ applications use:
int HsiSetScanTime(int time)
int time; //’time’ is in units of tenth’s of milliseconds.

For ’Basic’ applications use:
Declare Function HsiSetScanTime Lib "hsicom32" (_
 ByVal ScanTime As Integer _
) As Integer

PARAMETERS:
int time - The argument ’time’ is in units of tenth’s of milliseconds.

RETURNS:
Return status.

COMMENTS:
Sets scanning period for MAX, MIN and TIR functions.

hsicom32.dll Software Interface 34

Function HsiGetScanTime

For ’C’ applications use:
int HsiGetScanTime(int *time)
int time; //’time’ is in units of tenth’s of milliseconds.

For ’Basic’ applications use:
Declare Function HsiGetScanTime Lib "hsicom32" (_
 ByVal ScanTime As Integer _
) As Integer

PARAMETERS:
int *time - Pointer to current scan period.

RETURNS:
Return status.

DESCRIPTION:
A pointer is returned in the time parameter to the current scan period.

COMMENTS:
The argument ’time’ is in units of tenth’s of milliseconds.

hsicom32.dll Software Interface 35

Function HsiGetScanFlag

For ’C’ applications use:
int HsiGetScanFlag(int *flag)
int flag; //Read the current scan flag setting.

For ’Basic’ applications use:
Declare Function HsiGetScanFlag Lib "hsicom32" (_
 ByVal ScanFlag As Integer _
) As Integer

PARAMETERS:
int *flag - Pointer to current scan flag setting.

RETURNS:
Return status.

DESCRIPTION:
A pointer is returned in the flag parameter to the current scan flag.

COMMENTS:

hsicom32.dll Software Interface 36

Function HsiReadDirect

For ’C’ applications use:
int HsiReadDirect(int lvdt_count,unsigned char *lvdt_list,int **values)
int lvdt_count; //number of lvdt’s to be read.
unsigned char *lvdt_list; //pointer to a list of lvdt numbers.
int **values; //pointer to a table of integer values.

For ’Basic’ applications use:
Declare Function HsiReadDirect Lib "hsicom32" (_
 ByVal inputcount As Integer, _
 ByRef inputlist As Byte, _
 ByRef values As Integer _
) As Integer

PARAMETERS:
int lvdt_count - is the number of lvdt’s to be read by this call.

unsigned char *lvdt_list - is a pointer to a list of the lvdt numbers.

int **values -is a pointer to an integer pointer. The calling routine passes the address of a
variable where the pointer to the table of values is to be stored.

RETURNS:
Return status.

DESCRIPTION:
The function will set the supplied integer pointer to address the list of returned integers.

COMMENTS:
The lvdt numbers are 8 bit integers starting at "0" through "23" for the first HSI-24, "24"
through "47" for the second HSI-24, etc. The first four DC inputs are "96" through "99",
the next four DC inputs are "100" through "103", etc.

Each of the returned integers or values will be in the range of -8192 to +8191.

hsicom32.dll Software Interface 37

Appendix A: HSI-24 Formula Syntax

When a channel is read, its value is computed by a formula supplied to the HSI-24 by the
host software. The formulae are supplied to the HSI-24 in the form of an ASCII string ter-
minated by a null byte. Formulae are constructed in much the same way as they are in as-
signment statements in programming languages such as BASIC.

Formulae consist of combinations of functions, operators, constants, input terms and
channel terms.

Peak Hold Functions

MAX returns the largest value it sees as an argument while scanning.
MIN returns the smallest value it sees as an argument while scanning.
TIR returns MAX-MIN.
The MAX, MIN and TIR functions continue to be scanned although the channel which
uses them is not being read by the host software. They will ’freeze’ at their current value
if scanning is disabled. The scanning is controlled by the functions start_scan and
stop_scan. The period of scanning is set by the set_scan_time function. They are reset by
the reset_mm function.

Mathematical Functions

ABS returns the absolute value of the argument.
ACOS returns the arc-cosine of the argument. Result in radians.
ASIN returns the arc-sine of the argument. Result in radians.
ATAN returns the arctangent of the argument. Result in radians.
COS returns the cosine of the argument. Argument in radians.
GOF returns the greatest (most positive) of the argument list.
GOR returns the greatest (most positive) of the range set by the argument list.
LOF returns the least (most negative) of the argument list.
LOR returns the least (most negative) of the range set by the argument list.
SIN returns the sine of the argument. Argument in radians.
SQRT returns the square root of the argument.
SQR returns the argument multiplied by itself.
TAN returns the tangent of the argument. Argument in radians.

Miscellaneous Functions

PI2 has the value 3.141592654/2.0
PI has the value 3.141592654
RAD returns the argument converted from degrees to radians.
DEG returns the argument converted from radians to degrees.
(and) are allowed to impose computaion order.

hsicom32.dll Software Interface 38

Mathematical Operators

^ exponeniation
* multiplication.
/ division. (division by zero returns zero
+ addition.
- subtraction.

Constants

Constants in formulae are specified as ASCII strings. Scientific notation is not allowed
for constants, (i.e., ’.125’ is allowed, ’1.25E-01’ is not allowed).

Input Terms

Tn returns the value of transducer number n. The number n must be in the range 1 to 96.
The HSI-24 will read the transducer, multiply by the transducer full scale value and add
the transducer offset. Each transducer has an individual full scale value and offset.
An causes the value of analog number n to be returned. The number n must be in the
range 1 to 16. The HSI-24 will read the analog input, multiply by the analog full scale
value and add the analog offset. Each analog input has an individual full scale value and
offset.

Channel Terms

Cn returns the value of channel number n. The number n must be in the range 1 to 96.
The HSI-24 will compute the value of channel nn, multiply by the channel full scale
value and add the channel offset. Each channel has an individual full scale value and off-
set. Circular references to channels are not allowed and will cause the HSI-24 to return an
error code.

Example Formulae

T1
T1+T2
MAX(T2-T1)
(T1+T2+T3)/3
1.0034*(T1+T2)
(MAX(T1)+MIN(T1))/2
GOF(T1,T2,T3) returns the greatest of T1, T2 and T3.
LOF(T1,T2,T3,T4) returns the least of T1, T2, T3 and T4.
GOR(T1,T8) returns the greatest of T1,T2,T3,T4,T5,T6,T7 and T8.
LOR(C9,C13) returns the least of C9,C10,C11,C12 and C13.

hsicom32.dll Software Interface 39

Appendix B: Startup Settings

Immediately after loading the HSI-24 firmware the following settings will be valid.
All 96 channel scale factors are set to 1.
All 96 channel zero offsets are set to zero.
All 96 transducer full scale values are set to .08.
All 96 transcducer zero offsets are set to zero.
The first 4 analog full scale values are set to 1.
The remaining 12 analog full scale values are set to zero. (Although these are accessible
they are physically located on slave boards.
All 16 analog zero offsets are set to zero.
The floating point input and output modes are both set to the native (IEEE) mode.

hsicom32.dll Software Interface 40

Appendix C: Error Codes

Command Error

• 1 An invalid command or parameter was entered.

• 2 - 9: Reserved.

Channel Definition Errors

When defining channels, error codes 10-22 may be returned. They may be used to help
determine the part of the formula which is causing the problem.

• 10 An invalid channel number was entered.

• 11 Internal error..

• 12 Invalid opcode mneumonic.
A built-in function name has been improperly typed in. If "SINE(T4)" is entered
instead of "SIN(T4)" or "T1+S3" instead of "T1+T3".

• 13 Not enough operands for operator.
If "T1+" is entered the HSI-24 cannot determine what value to add to T1. If
"SIN()" is entered the HSI-24 cannot determine what value to use as the
argument of the sine function.

• 14 Node table full.
The HSI-24 reduces the entered formulae into a form which can be quickly
computed when required. The reduced formulae are stored in a table which has a
predetermined size. When the table is filled this error is returned. If this error
occurs, the number or the complexity of the entered formulae must be reduced.
Determining the number of node entries in the node table that a particular
formula consumes is difficult due to certain optimizations which the HSI-24
applies during the formula reduction process. The following guidelines will
allow determining the maximum number of nodes which a given formula will
consume.
1. Each constant consumes one node. The formula ".0023" consumes one node.
2. Each function use consumes one node for the function. Additional nodes will
be consumed for the function’s arguments. The formula "SIN(.0023)" consumes
one node for the SIN function plus one node (Rule 1) for the constant .0023, for
a total of 2 nodes. The TIR function is a special case which consumes 2 nodes
just for the function plus the additional nodes for the function arguments. The
formula "TIR(.0023)" consumes 2 nodes for the TIR function and 1 node for the
constant, for a total of 3 nodes.
3. Arithmetic operators (+ - * /) consume one node. The formula "1 + 2 + 3"
consumes 1 node for each of the "+" operators plus 1 node for each of the
constants (Rule 1), for a total of 5 nodes.
4. Channel references consume one node. The formula "C1" consumes 1 node.
5. Transducers and analog inputs consume one node. The formula "T1"
consumes 1 node. The formula "T1 + T2" consumes 1 node for each of the
transducers plus 1 node for the "+" operator (Rule 3), for a total of 3 nodes. The
first appearance of a transducer in a formula consumes 1 node however
subsequent appearances of the same transducer in any formula do not consume
additional nodes.
 Channel 1 is "T1+T2". This uses 3 nodes.

hsicom32.dll Software Interface 41

 Channel 2 is "T1+T3". This uses 2 nodes. T1 has already been allocated a node
by the channel 1 formula.

The total number of nodes available is 400 in firmware version ’PCA10.BIN’.
The HSI-24 cannot conserve nodes by recognising common subexpressions in
formulae. Node table space can be conserved by defining a channel with the
subexpression and then referencing that channel in the formulae which need the
subexpression value.

Channel 1 is "T5 - (T1 + T2 + T3 + T4)". (9 nodes)
Channel 2 is "T6 - (T1 + T2 + T3 + T4)". (5 nodes)
Channel 3 is "T7 - (T1 + T2 + T3 + T4)". (5 nodes)
Channel 4 is "T8 - (T1 + T2 + T3 + T4)". (5 nodes)
For a total of 9+5+5+5 or 24 nodes.

Alternately define channel 50 with the subexpression and use channel 50 in
place of the subexpression:
 Channel 50 is "T1 + T2 + T3 + T4". (7 nodes)
 Channel 1 is "T5 - C50". (3 nodes)
 Channel 2 is "T6 - C50". (3 nodes)
 Channel 3 is "T7 - C50". (3 nodes)
 Channel 4 is "T8 - C50". (3 nodes)
For a total of 7+3+3+3 or 16 nodes.

• 15 Bad transducer or analog input number.
If a formula contains "T175" or "A32". The highest transducer number allowed
is "T96". The highest analog input number allowed is "A16". Note: Although
the HSI-24 accepts transducer numbers up to 96 the slave HSI-24’s must be
present for these to produce any meaningful measurements.

• 16 Too many operands for operator.
If "T1 + T2 T3" is entered, the HSI-24 cannot determine what to do with the T3
part of the formula.

• 17 Bad numeric value in expression.
When entering constants in a formula "scientific notation" is not allowed. In
some computer languages the value .0015 may be entered as "1.5E-3". The
HSI-24 requires that the value be entered as ".0015".

• 18 Bad token. An invalid symbol was entered.

• 19 Formula too complex to parse.
This error occurs when a formula has more levels of parenthesis than the HSI-24
can handle

• 20 Recursive channel definition.
This error occurs when channels reference each other in a circular fashion.
 Channel 1 has the formula "T1+T2-C2".
 Channel 2 has the formula "T3+C1".
To determine the value of channel 1 the HSI-24 must first determine the value of
channel 2, which is dependent on the value of channel 1.

hsicom32.dll Software Interface 42

• 21 No memory left to allocate.
Besides storing the formulae in a reduced form (as described under error 14), the
original text of the formula is also saved within the HSI-24 memory. The
formula text is stored in a memory pool along with other items which are
necessary during formula entry. Should this pool of memory become filled this
error is issued.

• 22 General formula error.
The formula scanner in the HSI-24 will issue this error when the formula is bad
and no other formula error codes apply.

hsicom32.dll Software Interface 43

